Hydroxychloroquine
For Laboratory Research Only. Not for Clinical or Personal Use.
- Availability: 24/48H Stock Items & 2 to 6 Weeks non Stock Items.
- Dry Ice Shipment: No


Hydroxychloroquine
Description:
Hydroxychloroquine (HCQ) is a synthetic oral antimalarial drug that can be used in the study of malaria and autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Hydroxychloroquine is a potent autophagic flux inhibitor with antiviral activity (such as SARS-CoV-2 virus) that inhibits Toll-like receptor 7/9 (TLR7/9) signaling[1][2][3][4][5][6][7][8].UNSPSC:
12352005Hazard Statement:
H302, H317Target:
Autophagy; Parasite; SARS-CoV; Toll-like Receptor (TLR)Type:
Reference compoundRelated Pathways:
Anti-infection; Autophagy; Immunology/InflammationApplications:
COVID-19-anti-virusField of Research:
Cancer; InfectionAssay Protocol:
https://www.medchemexpress.com/hydroxychloroquine.htmlPurity:
99.82Solubility:
DMSO : ≥ 100 mg/mLSmiles:
ClC1=CC=C2C(NC(CCCN(CCO)CC)C)=CC=NC2=C1Molecular Formula:
C18H26ClN3OMolecular Weight:
335.87Precautions:
H302, H317References & Citations:
[1]Manzo C, et al. Psychomotor Agitation Following Treatment with Hydroxychloroquine. Drug Saf Case Rep. 2017 Dec;4 (1) :6.|[2]Lamphier M, et al. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol Pharmacol. 2014 Mar;85 (3) :429-40.|[3]Yao X, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) . Clin Infect Dis. 2020 Mar 9. pii: ciaa237.|[4]Persoons L, et al. Broad spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Res. 2021;193:105127. |[5]Ramser B, et al. Hydroxychloroquine modulates metabolic activity and proliferation and induces autophagic cell death of human dermal fibroblasts. J Invest Dermatol. 2009;129 (10) :2419-2426. |[6]Ruiz A, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7 (1) :e2059. Published 2016 Jan 14. |[7]Edwards MH, et al. Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation. 1997;96 (12) :4380-4384.|[8]Gómez-Guzmán M, et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2014;64 (2) :330-337.Shipping Conditions:
Room TemperatureStorage Conditions:
-20°C, 3 years; 4°C, 2 years (Powder)Scientific Category:
Reference compound1Clinical Information:
LaunchedIsoform:
PlasmodiumCitation 01:
ACS Omega. 2024 Feb 28;9 (10) :11870-11882.|Acta Pharm Sin B. 2025 Apr;15 (4) :2095-2113.|Acta Pharmacol Sin. 2021 Nov;42 (11) :1875-1887.|Adv Sci (Weinh) . 2025 Jun 23:e03322.|Aging. 2021 Mar 10;13 (6) :8421-8439.|Am J Cancer Res. 2020 Nov 1;10 (11) :3896-3910.|Arthritis Rheumatol. 2023 Feb;75 (2) :305-317.|Autophagy. 2022 May;18 (5) :971-989.|Autophagy. 2022 Sep;18 (9) :2178-2197.|Autophagy. 2023 Apr;19 (4) :1184-1198.|Biochem Biophys Res Commun. 2020 Dec 10;533 (3) :474-480.|Biochem Biophys Res Commun. 2022 May 7:603:130-137.|Bioorg Chem. 2024 Jun:147:107412.|bioRxiv. 2025 May 30.|Br J Pharmacol. 2023 Aug;180 (15) :1930-1948.|Cell Biochem Funct. 2022 Jun;40 (4) :403-416.|Cell Biol Int. 2025 Jul;49 (7) :757-771.|Chem Eng J. 2025 Oct 15.|Curr Med. 2023 Oct 17.|Int Immunopharmacol. 2026 Jan 1;168 (Pt 2) :115883.|iScience. 2022 Jun 30;25 (8) :104690.|iScience. 2025 Nov 17.|J Exp Pharmacol. 2022 Nov 8:14:353-365.|J Transl Med. 2024 Aug 22;22 (1) :785.|Mol Cancer. 2024 Oct 31;23 (1) :243.|Mol Med. 2025 Aug 25;31 (1) :282.|Nat Biotechnol. 2022 Dec;40 (12) :1834-1844.|Nat Commun. 2022 Jun 14;13 (1) :3419.|Patent. US20230218606A1.|Patent. US20240238271A1.|Patent. US20250025542A1.|Phytomedicine. 2024 Dec:135:156059.|Res Sq. 2024 Jun 21.|Research Square Preprint. 2023 Sep 6.|Respir Res. 2025 May 21;26 (1) :194.|Virology. 2023 Sep:586:105-114.|ACS Appl Mater Interfaces. 2022 Nov 9;14 (44) :49454-49470.|Acta Pharm Sin B. 2021 Dec;11 (12) :3966-3982.|Acta Pharmacol Sin. 2023 Apr;44 (4) :865-876.|Autophagy. 2023 May;19 (5) :1533-1550.|Biochem Biophys Res Commun. 2025 Nov 1:787:152767.|Biochem Pharmacol. 2022 Mar:197:114904.|bioRxiv. 2024 Dec 5:2024.12.04.626665.|bioRxiv. 2025 Nov 11.|BMC Med. 2021 Oct 15;19 (1) :247.|Br J Pharmacol. 2025 Aug;182 (15) :3649-3668.|Cell Death Dis. 2020 Apr 24;11 (4) :279.|Cell Discov. 2020 Mar 18:6:16.|Cell Rep Methods. 2023 Oct 23;3 (10) :100599.|Cell Signal. 2019 Feb:54:17-26.|Clin Chem. 2019 Dec;65 (12) :1522-1531. |Clin Sci (Lond) . 2019 Aug 14;133 (15) :1759-1777.|Ecotoxicol Environ Saf. 2025 Aug 25:303:118932.|Eur J Pharmacol. 2022 Oct 15:932:175237.|Food Agric Immunol. 2025 Feb 08.|Front Bioeng Biotechnol. 2020 May 8:8:378.|Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. 2020 Sep.|Heliyon. 2023 Nov 17;9 (11) :e21893.|Immunobiology. 2025 Mar 12;230 (3) :152891.|iScience. 2022 Jun 30;25 (8) :104690.|J Autoimmun. 2019 May:99:39-47.|J Biol Chem. 2023 Jun;299 (6) :104814.|J Control Release. 2020 Jan 28;320:304-313.|Life Sci. 2020 Apr 1;246:117366.|Life Sci. 2020 Feb 15;243:117277.|Life Sci. 2021 Oct 26;120095.|Mol Pharmacol. 2025 Sep 28.|Nat Biomed Eng. 2022 Jan;6 (1) :32-43.|Nat Commun. 2021 Aug 16;12 (1) :4964.|Nucleic Acids Res. 2021 Jan 8;49 (D1) :D1113-D1121.|Open Biol. 2025 Mar;15 (3) :240226.|Pharmacol Res. 2021 Jul:169:105642.|Phytomedicine. 2021 Feb:82:153465.|Research Square Preprint. 2021 Oct.|Rheumatology (Oxford) . 2025 Aug 13:keaf437.|Sci Rep. 2022 Oct 29;12 (1) :18259.|STAR Protoc. 2022 Dec 16;3 (4) :101859.|Theranostics. 2020 Apr 27;10 (13) :5829-5844.CAS Number:
[118-42-3]
