Anti-Hu CD14 FITC
CAT:
270-1F-293-T100
Size:
100 Tests
Price:
Ask
- Availability: 24/48H Stock Items & 2 to 6 Weeks non Stock Items.
- Dry Ice Shipment: No

Anti-Hu CD14 FITC
- Background: CD14 is a 55 kDa GPI-anchored glycoprotein, constitutively expressed on the surface of mature monocytes, macrophages, and neutrophils, where it serves as a multifunctional lipopolysaccharide receptor. It is also released to the serum both as a secreted and enzymatically cleaved GPI-anchored form. CD14 binds lipopolysaccharide molecule in a reaction catalyzed by lipopolysaccharide-binding protein (LBP), an acute phase serum protein. The soluble sCD14 is able to discriminate slight structural differences between lipopolysaccharides and is important for neutralization of serum allochthonous lipopolysaccharides by reconstituted lipoprotein particles. CD14 affects allergic, inflammatory and infectious processes.
- Specifications: The antibody MEM-15 reacts with CD14, a 53-55 kDa GPI (glycosylphosphatidylinositol)-linked extracellular membrane glycoprotein expressed on monocytes, macrophages and weakly on granulocytes also expressed by most tissue macrophages. The antibody MEM-15 also reacts with soluble forms of CD14 found in serum and in the urine of some nephrotic patients.
- Certification: RUO
- Host: Mouse
- Species Reactivity: Non-human primates, Human
- Immunogen: A crude mixture of human urinary proteins precipitated by ammonium sulphate from the urine of a patient suffering from proteinuria.
- Target Antigen: CD14
- Isotype: IgG1
- Clone: MEM-15
- Applications: Flow cytometry: The reagent is designed for analysis of human blood cells using 20 μl reagent / 100 μl of whole blood or 106 cells in a suspension. The content of a vial (2 mL) is sufficient for 100 tests.
- Validated Applications: FC
- Format: FITC
- Buffer: Stabilizing phosphate buffered saline (PBS), pH 7.4, 15 mM sodium azide
- References & Citations: *Majer F, Vlaskova H, Krol L, Kalina T, Kubanek M, Stolnaya L, Dvorakova L, Elleder M, Sikora J: Danon disease: a focus on processing of the novel LAMP2 mutation and comments on the beneficial use of peripheral white blood cells in the diagnosis of LAMP2 deficiency. Gene. 2012 May 1498(2):183-95., URL: https://pubmed.ncbi.nlm.nih.gov/22365987/,*Kanderova V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, Hrusak O, Lund-Johansen F, Kalina T: High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016 Apr15(4):1246-61., URL: http://www.ncbi.nlm.nih.gov/pubmed/26785729 ,*Jeraiby M, Sidi Yahya K, Depince-Berger AE, Lambert C: Microbicidal activity measured by flow cytometry: Optimization and standardization for detection of primary and functional deficiencies. J Immunol Methods. 2016 Sep 29. pii: S0022-1759(16)30220-4., URL: https://www.ncbi.nlm.nih.gov/pubmed/27693641 ,*Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J: Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med. 2002 Oct 21196(8):1017-24., URL: http://www.ncbi.nlm.nih.gov/pubmed/12391013 ,*Schiff DE, Rae J, Martin TR, Davis BH, Curnutte JT: Increased phagocyte Fc gammaRI expression and improved Fc gamma-receptor-mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects. Blood. 1997 Oct 1590(8):3187-94., URL: http://www.ncbi.nlm.nih.gov/pubmed/9376602 ,*Leukocyte Typing VI., Kishimoto T. et al. (Eds.), Garland Publishing Inc. (1997)., URL: ,*Leukocyte Typing V., Schlossman S. et al. (Eds.), Oxford University Press (1995)., URL: ,*Leukocyte Typing IV., Knapp W. et al. (Eds.), Oxford University Press (1989)., URL: ,*Leukocyte Typing III., McMichael A. J. et al (Eds.), Oxford University Press (1987)., URL: ,*Bazil V, Horejsi V, Baudys M, Kristofova H, Strominger JL, Kostka W, Hilgert I: Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur J Immunol. 1986 Dec16(12):1583-9., URL: https://www.ncbi.nlm.nih.gov/pubmed/3493149?dopt=A,*Funda DP, Tucková L, Farré MA, Iwase T, Moro I, Tlaskalová-Hogenová H: CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun. 2001 Jun69(6):3772-81., URL: http://www.ncbi.nlm.nih.gov/pubmed/11349042 ,*Cejkova P, Nemeckova I, Broz J, Cerna M: TLR2 and TLR4 expression on CD14++ and CD14+ monocyte subtypes in adult-onset autoimmune diabetes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 May 4. doi: 10.5507/bp.2015.016., URL: http://www.ncbi.nlm.nih.gov/pubmed/?term=cejkova+p+nemeckova+i+broz+j+cerna+m ,
- Other References: *Juan TS, Hailman E, Kelley MJ, Wright SD, Lichenstein HS: Identification of a domain in soluble CD14 essential for lipopolysaccharide (LPS) signaling but not LPS binding. J Biol Chem. 1995 Jul 21270(29):17237-42., URL: https://pubmed.ncbi.nlm.nih.gov/7542233/,*Lodrup Carlsen KC, Granum B: Soluble CD14: role in atopic disease and recurrent infections, including otitis media. Curr Allergy Asthma Rep. 2007 Nov7(6):436-43., URL: https://pubmed.ncbi.nlm.nih.gov/17986374/,*Asai Y, Makimura Y, Kawabata A, Ogawa T: Soluble CD14 discriminates slight structural differences between lipid as that lead to distinct host cell activation. J Immunol. 2007 Dec 1179(11):7674-83., URL: https://pubmed.ncbi.nlm.nih.gov/18025213/,*Fernández-Real JM, Broch M, Richart C, Vendrell J, López-Bermejo A, Ricart W: CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab. 2003 Apr88(4):1780-4., URL: https://pubmed.ncbi.nlm.nih.gov/12679473/,
- Storage Conditions: Store at 2-8°C. Protect from prolonged exposure to light. Do not freeze.